Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.652
Filter
1.
J Biomech ; 166: 112070, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38569456

ABSTRACT

Cement-augmentation is a technique commonly used during posterior lumbar instrumented fusion (PLIF) to reinforce compromised osteoporotic vertebral bone, minimize the risk of loosening screws, enhance stability, and improve overall surgical outcomes. In this study, we introduce a novel segmented vertebral body regional modeling approach to investigate the effects of osteoporosis and cement-augmented lumbar fusion on disc biomechanics at spinal levels adjacent to the fused vertebrae. Using our previously validated personalized-poroelastic-osteoligamentous FE model of the spine, fusion was simulated at L4-L5, and the biomechanics of adjacent levels were studied for 30 patients (non-osteoporotic patients (N = 15), osteoporotic patients (N = 15)). PLIF models, with and without cement-augmentation, were developed and compared after an 8 h-rest period (200 N), following a 16 h-cyclic compressive loading of 500-1000 N (40 and 20 min, respectively). Movement in different directions (flexion/ extension/ lateral bending/ axial rotation) was simulated using 10Nm moment before and after cyclic loading. The material mapping algorithm was validated by comparing the results of voxel-based and parametric models. The FE cement-augmented models, subject to daily activity loading, demonstrated significant differences in disc height loss and fluid loss as compared to non-cemented models. The calculated axial stress and fiber strain values were also significantly higher for these models. This work demonstrates that although osteoporosis does not significantly alter the time-dependent characteristics of adjacent IVDs post-surgery, cement-augmentation increases the risk of adjacent segment disease (ASD) incidence. A holistic understanding of the trade-offs and long-term complex interplay between structural reinforcement modalities, including cement augmentation, and altered biomechanics warrants further investigation.


Subject(s)
Osteoporosis , Spinal Fusion , Humans , Finite Element Analysis , Lumbar Vertebrae/surgery , Osteoporosis/surgery , Bone Cements , Spinal Fusion/adverse effects , Biomechanical Phenomena
2.
ANZ J Surg ; 94(4): 724-732, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572937

ABSTRACT

INTRODUCTION: Surgical glove perforation has been linked to a double-fold increased risk of surgical site infection. Infection in the context of arthroplasty can have devastating consequences. In orthopaedics, use of polymethyl methacrylate (PMMA) bone cement is commonplace, and the impact on glove strength and perforation risk is not fully understood. This study aimed to examine the resistance to perforation and thickness of gloves following PMMA exposure, in accordance with the International Organization for Standardization (ISO) standard for glove integrity. METHODS: Pairs of gloves were separated and randomly sorted into exposure and control groups. Twenty pairs of latex and 40 pairs of polyisoprene gloves were used. Exposure group glove cuffs were in contact with cement from a single surface of the glove for 13 min as cement cured. Force to perforation and glove thickness were tested in accordance with ISO guidelines. RESULTS: Latex gloves were found to have a significantly increased force to perforation following PMMA exposure (10.26 Newtons (N) vs. 9.81 N, P = 0.048). Both polyisoprene under- and over-gloves were shown to have no significant change in strength to perforation post exposure (9.69 N vs. 9.83 N, P = 0.561, and 10.26 N vs. 10.65 N, P = 0.168, respectively). All groups were over the ISO standard minimum strength of 5 N. CONCLUSIONS: Exposure of latex and polyisoprene surgical gloves to PMMA bone cement does not appear to increase glove perforation risk and rather may improve natural rubber latex glove strength. This study supports the use of latex and polyisoprene surgical gloves in procedures that involve the handling of PMMA bone cement.


Subject(s)
Gloves, Surgical , Orthopedics , Humans , Polymethyl Methacrylate/adverse effects , Bone Cements/adverse effects , Latex
3.
PLoS One ; 19(4): e0301927, 2024.
Article in English | MEDLINE | ID: mdl-38635748

ABSTRACT

Generally, UHS-ECC should consume massive cement, which is negative to its sustainability as cement production leads to 8% of global CO2 emissions. To decrease the cost of production and carbon emissions of UHS-ECC, rice husk ash was employed to replace the cement as a supplementary cementitious material in this study. Experiment results illustrate that blending rice husk ash (RHA) would decrease the fluidity of mortar. Furthermore, the green UHS-ECC shows a maximum compressive strength of 130.3 MPa at 28 days when RHA content was 20% of cement. The ultimate tensile strength of UHS-ECCs first increased and then decreased, while both tensile strain and strain energy presented an opposite tendency. At the micro-scale, if RHA content was lower than 20% of cement, incorporating RHA can significantly decreasing fiber bridging complementary energy of UHS-ECC, thus reducing pseudo strain hardening energy (PSHenergy) index, which finely agrees with the degradation of ductility of UHS-ECCs. To guarantee the features of ultra-high strength, acceptable workability, and high tensile ductility, the RHA dosage should not be in excess 20% of cement. These researched results are prospected to the contribution of pozzolanic RHA on the efficient usage of sustainable UHS-ECC.


Subject(s)
Oryza , Bone Cements , Carbon , Compressive Strength , Glass Ionomer Cements
4.
Medicine (Baltimore) ; 103(14): e37697, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579049

ABSTRACT

BACKGROUND: Total knee arthroplasty involves the use of cemented tibial components for fixation. In recent years, cementless porous tantalum tibial components have been increasingly utilized. The aim of this meta-analysis was to compare the efficacy of cementless porous tantalum tibial components with traditional cemented tibial components in terms of postoperative outcomes following total knee arthroplasty. METHODS: Relevant literature was retrieved from Cochrane Library, PubMed, Embase, and Web of Science using the search terms "(trabecular metal OR Porous tantalum)" AND "knee" up to July 2023. The weighted mean difference with a 95% confidence interval was used as the effect size measure to evaluate the functional recovery of the knee joint, radiological analysis, complications, and implant revisions between cementless porous tantalum tibial components and traditional cemented tibial components after total knee arthroplasty. Review Manager 5.3 was utilized to conduct a comparative analysis of all included studies. RESULTS: Nine studies with a total of 1117 patients were included in this meta-analysis, consisting of 447 patients in the porous tantalum group and 670 patients in the cemented group. Radiological analysis demonstrated that the porous tantalum group had better outcomes than the cemented group (P < .05). The combined results for the 5-year and 10-year follow-ups, range of motion, Western Ontario and McMaster University Osteoarthritis Index, complications, and implant revisions showed no significant differences between the porous tantalum and cemented groups. CONCLUSION: The results of the 5-year and 10-year follow-ups indicate that the use of cementless porous tantalum tibial components is comparable to traditional cemented tibial components, with no significant advantages observed. However, at the 5-year follow-up, the porous tantalum group demonstrated a good bone density in the proximal tibia. Future studies with a larger sample size, long-term clinical follow-up, and radiological results are needed to verify the differences between the 2 implants.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Osteoarthritis, Knee , Humans , Arthroplasty, Replacement, Knee/methods , Tantalum , Tibia/surgery , Porosity , Treatment Outcome , Knee Joint/surgery , Prosthesis Design , Bone Cements , Osteoarthritis, Knee/surgery
5.
BMC Musculoskelet Disord ; 25(1): 285, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609902

ABSTRACT

OBJECTIVE: To investigate the effect of bone cement on the vertebral body and biomechanical properties in percutaneous cement discoplasty (PCD) for degenerative lumbar disc disease. METHODS: Three-dimensional reconstruction of L2 ~ L3 vertebral bodies was performed in a healthy volunteer, and the corresponding finite element model of the spine was established. Biomechanical analysis was performed on the changes in stress distribution in different groups of models by applying quantitative loads. RESULTS: Models with percutaneous discoplasty (PCD) showed improved stability under various stress conditions, and intervertebral foraminal heights were superior to models without discoplasty. CONCLUSION: Cement discoplasty can improve the stability of the vertebral body to a certain extent and restore a certain height of the intervertebral foramen, which has a good development prospect and potential.


Subject(s)
Scoliosis , Humans , Scoliosis/diagnostic imaging , Scoliosis/surgery , Finite Element Analysis , Bone Cements/therapeutic use , Spine , Healthy Volunteers
6.
BMC Musculoskelet Disord ; 25(1): 277, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600536

ABSTRACT

INTRODUCTION: The number of primary and revision Total Knee Arthroplasty (TKA) cases are expected to increase in future. There are various advantages and disadvantage to employing either of the two main types of stem fixation methods - cemented or hybrid technique. This review aimed to study the most optimal fixation method for revision TKAs by comparing radiological outcomes and re-revision rates. METHODS: A systematic review and meta-analysis was performed using PubMed and Cochrane Library from 2010 to identify studies explicitly comparing outcomes between cemented against hybrid fixation revision TKA techniques, with a minimum follow up of at least 24 months. A total of 8 studies was included in this review. Egger's test and visual inspection of the funnel plot did not reveal publication bias. RESULTS: There was no statistically significant difference in radiological failure and loosening (OR 0.79, CI 0.37-1.66, I2 = 29%, p = 0.22), all causes of re-revision (OR 1.03, CI 0.73-1.44, I2 = 0%, p = 0.56) and aseptic revision (OR 0.74, CI 0.27-2.02, I2 = 0%, p = 0.41) between cemented and hybrid techniques. Functional and pain outcomes compared between the two fixation techniques were largely similar across the studies included in this meta-analysis. CONCLUSION: Despite a trend favouring hybrid stems in revision TKA, current evidence revealed that radiological outcomes and re-revision rates are largely similar between cemented and hybrid fixation techniques.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Humans , Arthroplasty, Replacement, Knee/methods , Bone Cements/therapeutic use , Physical Examination , Prosthesis Design , Prosthesis Failure , Reoperation/methods , Treatment Outcome
7.
IEEE J Transl Eng Health Med ; 12: 340-347, 2024.
Article in English | MEDLINE | ID: mdl-38606389

ABSTRACT

OBJECTIVE: Cemented total hip arthroplasty (THA) demonstrates superior survival rates compared to uncemented procedures. Nevertheless, most younger patients opt for uncemented THA, as removing well-fixed bone cement in the femur during revisions is complex, particularly the distal cement plug. This removal procedure often increases the risk of femoral fracture or perforation, haemorrhage and weakening bone due to poor drill control and positioning. Aim of this study was to design a novel drill guide to improve drill positioning. METHODS AND PROCEDURES: A novel orthopaedic drill guide was developed, featuring a compliant centralizer activated by a drill guide actuator. Bone models were prepared to assess centralizing performance. Three conditions were tested: drilling without guidance, guided drilling with centralizer activation held, and guided drilling with centralizer activation released. Deviations from the bone centre were measured at the entry and exit point of the drill. RESULTS: In the centralizing performance test, the drill guide significantly reduced drill hole deviations in both entry and exit points compared to the control ([Formula: see text]). The absolute deviation on the exit side of the cement plug was 10.59mm (SD 1.56) for the 'No drill guide' condition, 3.02mm (SD 2.09) for 'Drill guide - hold' and 2.12mm (SD 1.71) for 'Drill guide - release'. The compliant drill guide centralizer significantly lowered the risk of cortical bone perforation during intramedullary canal drilling in the bone models due to better control of the cement drill position. Clinical and Translational Impact Statement: The drill guide potentially reduces perioperative risks in cemented femoral stem revision. Future research should identify optimal scenarios for its application.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Orthopedics , Humans , Arthroplasty, Replacement, Hip/adverse effects , Reoperation , Femur/surgery , Bone Cements/therapeutic use
8.
BMC Musculoskelet Disord ; 25(1): 290, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622692

ABSTRACT

BACKGROUND: The proximal femoral nail anti-rotation (PFNA) with cement enhancement enhances the anchorage ability of internal fixation in elderly with osteoporotic intertrochanteric fracture. However, whether it is superior to hemiarthroplasty is still controversial. The present study aimed to determine which treatment has better clinical outcomes among older patients. METHODS: We retrospectively analyzed 102 elderly patients with osteoporosis who developed intertrochanteric fractures and underwent PFNA combined with cement-enhanced internal fixation (n = 52, CE group), and hemiarthroplasty (n = 50, HA group) from September 2012 to October 2018. All the intertrochanteric fractures were classified according to the AO/OTA classification. Additionally, the operative time, intraoperative blood loss, intraoperative and postoperative blood transfusion rates, postoperative weight-bearing time, hospitalization time, Barthel Index of Activities Daily Living, Harris score of hip function, visual analog (VAS) pain score, and postoperative complications were compared between the two groups. RESULTS: The CE group had significantly shorter operative time, lesser intraoperative blood loss, lower blood transfusion rate, and longer postoperative weight-bearing time than the HA group. The CE group had lower Barthel's Index of Activities of Daily Living, lower Harris' score, and higher VAS scores in the first and third months after surgery than the HA group, but no difference was observed between the two groups from 6 months to 12 months. There was no significant difference in the total post-operative complications between the two groups. CONCLUSION: The use of PFNA combined with a cement-enhanced internal fixation technique led to shorter operative time and lesser intraoperative blood loss and trauma in elderly patients as compared to HA.


Subject(s)
Fracture Fixation, Intramedullary , Hemiarthroplasty , Hip Fractures , Humans , Aged , Retrospective Studies , Bone Nails , Hemiarthroplasty/adverse effects , Hemiarthroplasty/methods , Blood Loss, Surgical/prevention & control , Activities of Daily Living , Treatment Outcome , Hip Fractures/diagnostic imaging , Hip Fractures/surgery , Bone Cements/therapeutic use , Postoperative Complications/surgery , Fracture Fixation, Intramedullary/adverse effects
9.
J Orthop Surg Res ; 19(1): 240, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622736

ABSTRACT

OBJECTIVE: To assess the radiographic outcomes, clinical outcomes and complications of percutaneous kyphoplasty (PKP) with and without posterior pedicle screw fixation (PPSF) in the treatment of severe osteoporotic vertebral compression fractures (sOVCF) with nonunion. METHODS: This study involved 51 patients with sOVCF with nonunion who underwent PKP or PPSF + KP. The operation time, intraoperative blood loss, volume of injected bone cement, operation costs and hospital stays were all recorded. In addition, the Visual Analogue Scale (VAS) and the Oswestry Disability Index (ODI) were assessed separately for each patient before and after surgery. RESULTS: Compared with the PPSF + KP group, the PKP group had shorter operation time, less intraoperative blood loss, shorter hospital stays and fewer operation costs. However, cobb's angle improvement (13.4 ± 4.3° vs. 21.4 ± 5.3°), VWR improvement ratio (30.4 ± 11.5% vs. 52.8 ± 12.7%), HA (34.9 ± 9.0% vs. 63.7 ± 7.6%) and HM (28.4 ± 11.2% vs. 49.6 ± 7.7%) improvement ratio were all higher in PPSF + KP group than that in PKP group. In addition, the ODI index and VAS score in both groups were significantly decreased at the postoperative and final follow-up. PKP group's postoperative VAS score was significantly lower than that in PPSF + KP group, but there was no statistically significant difference in VAS score at the last follow-up. CONCLUSION: PKP and PPSF + KP can both effectively relieve the pain associated with sOVCF with nonunion. PPSF + KP can achieve more satisfactory vertebral reduction effects compared to PKP. However, PKP was less invasive and it has more advantages in shortening operation time and hospital stay, as well as decreasing intraoperative blood loss and operation costs.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Pedicle Screws , Spinal Fractures , Humans , Fractures, Compression/diagnostic imaging , Fractures, Compression/surgery , Fractures, Compression/drug therapy , Blood Loss, Surgical , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Spinal Fractures/drug therapy , Treatment Outcome , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/surgery , Osteoporotic Fractures/drug therapy , Bone Cements/therapeutic use , Retrospective Studies
10.
BMC Musculoskelet Disord ; 25(1): 294, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627655

ABSTRACT

PURPOSE: To assess the clinical safety, accuracy, and efficacy of percutaneous kyphoplasty (PKP) surgery using an enhanced method of unilateral puncture on the convex side for the treatment of painful osteoporotic vertebral compression fractures (P-OVCF) with scoliosis. METHODS: Clinical and radiographic data of P-OVCF patients with scoliosis who underwent PKP via unilateral puncture on the convex side from January 2018 to December 2021 were retrospectively analyzed. This technique's detailed surgical steps and tips were described. The local kyphosis angle (LKA), scoliosis Cobb angle (SCA), and local scoliosis Cobb angle (LSCA) were measured using X-ray and compared at pre-operation, post-operation, and the last follow-up. The width of pedicle (POW), inner inclination angle (IIA), lateral distance (LD), and puncture course length (PCL) were measured on the axial computed tomography image and compared between two sides. Postoperative computed tomography was employed to evaluate the condition of cement distribution and puncture. Clinical outcomes were evaluated using the Oswestry Disability Index (ODI) and Visual Analog Scale (VAS) for back pain (BP). RESULTS: Thirty-six patients, 23 women and 13 men, with an average age of 76.31 ± 6.28 years were monitored for 17.69 ± 4.70 months. The median surgical duration of single vertebrae was 35 min. The volume of bone cement for single vertebrae was 3.81 ± 0.87 ml and the proportion of sufficient cement distribution of the patients was 97.22. LKA was considerably improved from pre-operation to post-operation and sustained at the last follow-up. SCA and LSCA were not significantly modified between these three-time points. IIA, PCL, and LD were lower on the convex side than on the concave side. POW was considerably wider on the convex side. The ODI and VAS-BP scores were significantly improved after surgery and sustained during the follow-up. CONCLUSIONS: Combining with the proper assessment of the pre-injured life status of patients, PKP surgery using unilateral puncture on the convex side for the treatment of P-OVCF with scoliosis can achieve safe, excellent clinical, and radiographic outcomes.


Subject(s)
Fractures, Compression , Kyphoplasty , Kyphosis , Osteoporotic Fractures , Scoliosis , Spinal Fractures , Male , Humans , Female , Aged , Aged, 80 and over , Kyphoplasty/methods , Fractures, Compression/diagnostic imaging , Fractures, Compression/etiology , Fractures, Compression/surgery , Scoliosis/complications , Scoliosis/diagnostic imaging , Retrospective Studies , Spinal Fractures/complications , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Treatment Outcome , Spine , Bone Cements/therapeutic use , Punctures , Kyphosis/diagnostic imaging , Kyphosis/etiology , Kyphosis/surgery , Osteoporotic Fractures/complications , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/surgery
11.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 371-374, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38595261

ABSTRACT

With the development of modern medical standards, autoimmune diseases and their associated successive osteoporosis have received increasing attention in recent years. Patients with autoimmune diseases, due to the characteristics of the disease and the prolonged use of glucocorticoid hormone therapy, may affect the bone formation and bone absorption of the patient, followed by severe successive osteoporosis, thereby increasing the risk of osteoporotic vertebral fractures. Vertebral compression fractures of the spine are common fracture types in patients with osteoporotic fractures. Osteoporosis is a common complication after glucocorticoid therapy in patients with autoimmune diseases. Percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) are minimally invasive operation and are commonly used surgical methods for the treatment of osteoporotic vertebral compression fractures. However, due to the operation of spinal puncture during the operation, there are serious surgical risks such as bone cement leakage, spinal epidural hemorrhage, subdural hemorrhage, and subarachnoid hemorrhage in both PVP and PKP. As a result, it is necessary to evaluate the patient' s body before surgery carefully, especially in the case of blood coagulation. This article reports a case of autoimmune disease patient admitted to Peking University People' s Hospital due to lumbar 4 vertebral compression fracture combined with Sjögren' s syndrome. The patient' s preoperative examination showed that the activated partial thromboplastin time (APTT) was significantly prolonged. After completing the APTT extended screening experiment and lupus anticoagulant factor testing, the multi-disciplinary team (MDT) of Peking University People' s Hospital jointly discussed the conclusion that the patient' s test results were caused by an abnormal self-immunity anti-copulant lupus (LAC). Based on the results of the laboratory examination, the patient was considered to be diagnosed with combined antiphospholipid syndrome (APS). For such patients, compared with the patient' s tendency to bleed, we should pay more attention to the risk of high blood clotting in the lower limbs of the patient, pulmonary clots and so on. With timely anti-coagulation treatment, the patient safely passed the peripheral period and was successfully discharged from the hospital. Therefore, for patients with autoimmune diseases with prolonged APTT in the perioperative period, doctors need to carefully identify the actual cause and carry out targeted treatment in order to minimize the risk of surgical and perioperative complications and bring satisfactory treatment results to the patients.


Subject(s)
Autoimmune Diseases , Fractures, Compression , Kyphoplasty , Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Spinal Fractures/surgery , Spinal Fractures/etiology , Fractures, Compression/surgery , Vertebroplasty/adverse effects , Vertebroplasty/methods , Partial Thromboplastin Time , Glucocorticoids , Prothrombin Time , Kyphoplasty/adverse effects , Kyphoplasty/methods , Osteoporosis/complications , Osteoporotic Fractures/surgery , Osteoporotic Fractures/etiology , Bone Cements , Treatment Outcome , Retrospective Studies
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 426-431, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38632061

ABSTRACT

Objective: To explore the effectiveness of using antibiotic bone cement-coated plates internal fixation technology as a primary treatment for Gustilo type ⅢB tibiofibular open fractures. Methods: The clinical data of 24 patients with Gustilo type ⅢB tibiofibular open fractures who were admitted between January 2018 and December 2021 and met the selection criteria was retrospectively analyzed. Among them, there were 18 males and 6 females, aged from 25 to 65 years with an average age of 45.8 years. There were 3 cases of proximal tibial fracture, 6 cases of middle tibial fracture, 15 cases of distal tibial fracture, and 21 cases of fibular fracture. The time from injury to emergency surgery ranged from 3 to 12 hours, with an average of 5.3 hours. All patients had soft tissue defects ranging from 10 cm×5 cm to 32 cm×15 cm. The time from injury to skin flap transplantation for wound coverage ranged from 1 to 7 days, with an average of 4.1 days, and the size of skin flap ranged from 10 cm×5 cm to 33 cm×15 cm. Ten patients had bone defects with length of 2-12 cm (mean, 7.1 cm). After emergency debridement, the tibial fracture end was fixed with antibiotic bone cement-coated plates, and the bone defect area was filled with antibiotic bone cement. Within 7 days, the wound was covered with a free flap, and the bone cement was replaced while performing definitive internal fixation of the fracture. In 10 patients with bone defect, all the bone cement was removed and the bone defect area was grafted after 7-32 weeks (mean, 11.8 weeks). The flap survival, wound healing of the affected limb, complications, and bone healing were observed after operation, and the quality of life was evaluated according to the short-form 36 health survey scale (SF-36 scale) [including physical component summary (PCS) and mental component summary (MCS) scores] at 1 month, 6 months after operation, and at last follow-up. Results: All 24 patients were followed up 14-38 months (mean, 21.6 months). All the affected limbs were successfully salvaged and all the transplanted flaps survived. One case had scar hyperplasia in the flap donor site, and 1 case had hypoesthesia (grade S3) of the skin around the scar. There were 2 cases of infection in the recipient area of the leg, one of which was superficial infection after primary flap transplantation and healed after debridement, and the other was sinus formation after secondary bone grafting and was debrided again 3 months later and treated with Ilizarov osteotomy, and healed 8 months later. The bone healing time of the remaining 23 patients ranged from 4 to 9 months, with an average of 6.1 months. The scores of PCS were 44.4±6.5, 68.3±8.3, 80.4±6.9, and the scores of MCS were 59.2±8.2, 79.5±7.8, 90.0±6.6 at 1 month, 6 months after operation, and at last follow-up, respectively. The differences were significant between different time points ( P<0.05). Conclusion: Antibiotic bone cement-coated plates internal fixation can be used in the primary treatment of Gustilo type ⅢB tibiofibular open fractures, and has the advantages of reduce the risk of infection in fracture fixation, reducing complications, and accelerating the functional recovery of patients.


Subject(s)
Fractures, Open , Soft Tissue Injuries , Tibial Fractures , Male , Female , Humans , Middle Aged , Tibia/surgery , Bone Cements , Fractures, Open/surgery , Anti-Bacterial Agents , Cicatrix/surgery , Retrospective Studies , Quality of Life , Treatment Outcome , Tibial Fractures/surgery , Skin Transplantation , Fracture Fixation, Internal/adverse effects , Soft Tissue Injuries/surgery
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 474-479, 2024 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-38632069

ABSTRACT

Objective: To investigate the feasibility and effectiveness of antibiotic bone cement directly inducing skin regeneration technology in the repairing of wound in the lateral toe flap donor area. Methods: Between June 2020 and February 2023, antibiotic bone cement directly inducing skin regeneration technology was used to repair lateral toe flap donor area in 10 patients with a total of 11 wounds, including 7 males and 3 females. The patients' age ranged from 21 to 63 years, with an average of 40.6 years. There were 3 cases of the distal segment of the thumb, 2 cases of the distal segment of the index finger, 1 case of the middle segment of the index and middle fingers, 1 case of the distal segment of the middle finger, and 3 cases of the distal segment of the ring finger. The size of the skin defect of the hand ranged from 2.4 cm×1.8 cm to 4.3 cm×3.4 cm. The disease duration ranged from 1 to 15 days, with an average of 6.9 days. The flap donor sites were located at fibular side of the great toe in 5 sites, tibial side of the second toe in 5 sites, and tibial side of the third toe in 1 site. The skin flap donor site wounds could not be directly sutured, with 2 cases having exposed tendons, all of which were covered with antibiotic bone cement. Results: All patients were followed up 6 months to 2 years, with an average of 14.7 months. All the 11 flaps survived and had good appearance. The wound healing time was 40-72 days, with an average of 51.7 days. There was no hypertrophic scar in the donor site, which was similar to the color of the surrounding normal skin; the appearance of the foot was good, and wearing shoes and walking of the donor foot were not affected. Conclusion: It is a feasible method to repair the wound in the lateral foot flap donor area with the antibiotic bone cement directly inducing skin regeneration technology. The wound heals spontaneously, the operation is simple, and there is no second donor site injury.


Subject(s)
Finger Injuries , Perforator Flap , Plastic Surgery Procedures , Soft Tissue Injuries , Male , Female , Humans , Young Adult , Adult , Middle Aged , Bone Cements , Skin Transplantation , Finger Injuries/surgery , Toes/surgery , Soft Tissue Injuries/surgery , Treatment Outcome
14.
PLoS One ; 19(4): e0298761, 2024.
Article in English | MEDLINE | ID: mdl-38598491

ABSTRACT

The intent of this study is to explore the physical properties and long-term performance of concrete made with metakaolin (MK) as a binder, using microsilica (MS) and nanosilica (NS) as substitutes for a portion of the ordinary Portland cement (OPC) content. The dosage of MS was varied from 5% to 15% for OPC-MK-MS blends, and the dosage of NS was varied from 0.5% to 1.5% for OPC-MK-NS blends. Incorporation of these pozzolans accelerated the hardening process and reduced the flowability, consistency, and setting time of the cement paste. In addition, it produced a denser matrix, improving the strength of the concrete matrix, as confirmed by scanning electron microscopy and X-ray diffraction analysis. The use of MS enhanced the strength by 10.37%, and the utilization of NS increased the strength by 11.48% at 28 days. It also reduced the penetrability of the matrix with a maximum reduction in the water absorption (35.82%) and improved the resistance to the sulfate attack for specimens containing 1% NS in the presence of 10% MK. Based on these results, NS in the presence of MK can be used to obtain cementitious structures with the enhanced strength and durability.


Subject(s)
Bone Cements , Glass Ionomer Cements , Crystallography, X-Ray , Intention , Microscopy, Electron, Scanning
15.
Sci Rep ; 14(1): 6716, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509345

ABSTRACT

Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C-S-H) and AFm ettringite phases. Biogenic CaCO3 and C-S-H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics.


Subject(s)
Saccharum , Silicates , Calcium Compounds , Bone Cements , Bacteria , Water
16.
Pain Physician ; 27(3): E327-E336, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506685

ABSTRACT

BACKGROUND: Kummell's disease (KD) and osteoporotic vertebral compression fracture (OVCF) are commonly found in patients with osteoporosis. Several studies have been conducted on bone cement distribution in OVCF or KD; a comparison between the 2 diseases is rarely reported. OBJECTIVES: To compare the clinical efficacy and bone cement distribution difference between KD and OVCFs after percutaneous kyphoplasty (PKP). STUDY DESIGN: This was a retrospective, nonrandomized controlled study. SETTING: Department of Orthopedics from an affiliated hospital. METHODS: From January 2018 to December 2020, 61 patients who underwent PKP surgery for single KD or OVCF and met the inclusion criteria were retrospectively reviewed. All patients were assigned to 2 groups: the KD group and the OVCF group. Clinical and radiologic characteristics, including the bone cement volume, leakage, bone cement dispersion scale, anterior vertebral height (AVH), median vertebral height (MVH), posterior vertebral height (PVH), Cobb angle and Visual Analog Scale (VAS) were analyzed and compared using Mimics three-dimensional (3D) reconstruction images and 3D reconstruction computed tomography, preoperatively, postoperatively, and 2 years after the operation, respectively. The correlations between the bone cement dispersion scale and the VH improvement rate (VHIR), VH change rate (VHCR), VAS improvement rate (VASIR), and follow-up VAS improvement rate (f-VASIR) were also evaluated. RESULTS: The mean follow-up time was 24.0 months. Postoperative VH, Cobb angle, vertebra volume, and VAS score were significantly improved in the 2 groups (P < 0.05). There was no statistical difference in postoperative parameters between the 2 groups. While a strong positive correlation between VHIR and bone cement dispersion scale was observed in the OVCF group (P < 0.01), no significant correlation between VHIR and bone cement dispersion scale was found in the KD group. There was no correlation between VASIR and bone cement dispersion scale in both groups. Compared with postoperation, VH was lower in both groups in later follow-up, and the difference between the 2 groups was statistically significant (P < 0.05). VH, VAS, f-VASIR, and VHCR had a worse manifestation in the KD group than in the OVCF group. However, no significant correlation was found between VHCR, f-VASIR, and bone cement dispersion scale in the 2 groups. LIMITATIONS: This study was limited by the non-randomized design, small sample size, and lack of a comprehensive follow-up period. CONCLUSIONS: Although there was no significant difference in the bone cement distribution and early clinical efficacy between KD and OVCF patients under the same surgical plan and surgeon, OVCF patients exhibited better long-term radiologic and clinical outcomes.


Subject(s)
Fractures, Compression , Kyphoplasty , Spinal Fractures , Spondylosis , Humans , Bone Cements/therapeutic use , Fractures, Compression/surgery , Retrospective Studies , Spinal Fractures/surgery
17.
Int Wound J ; 21(4): e14590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531354

ABSTRACT

Clinical studies indicate antibiotic bone cement with propeller flaps improves diabetic foot wound repair and reduces amputation rates, but the molecular mechanisms, particularly key proteins' role remain largely unexplored. This study assessed the efficacy of antibiotic bone cement for treating diabetic foot wounds, focusing on molecular impact on ROCK1. Sixty patients were randomized into experimental (EXP, n = 40) and control (CON, n = 20) groups, treated with antibiotic bone cement and negative pressure. Wound healing rate, amputation rate, wound secretion culture and C-reactive protein (CRP) changes, were monitored. Comprehensive molecular investigations were conducted and animal experiments were performed to further validate the findings. Statistical methods were employed to verify significant differences between the groups and treatment outcomes. The EXP group showed significant improvements in wound healing ( χ 2 $$ {\chi}^2 $$ = 11.265, p = 0.004) and reduced amputation rates. Elevated levels of ROCK1, fibroblasts and VGF were observed in the trauma tissue post-treatment in the experimental group compared to pre-treatment and the control group (all p < 0.05). Improved trauma secretion culture and CRP were also noted in the EXP group (all p < 0.05). The study suggests that antibiotic bone cement enhances diabetic foot wound healing, possibly via upregulation of ROCK1. Further research is needed to elucidate the underlying molecular mechanisms and broader clinical implications.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/therapy , Bone Cements/therapeutic use , Anti-Bacterial Agents/therapeutic use , Wound Healing , Amputation, Surgical , rho-Associated Kinases/therapeutic use
18.
J Orthop Surg Res ; 19(1): 169, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448971

ABSTRACT

OBJECTIVE: The objective of this study is to investigate the impact of four natural product extracts, namely, aloe-emodin, quercetin, curcumin, and tannic acid, on the in vitro bacteriostatic properties and biocompatibility of gentamicin-loaded bone cement and to establish an experimental groundwork supporting the clinical utility of antibiotic-loaded bone cements (ALBC). METHODS: Based on the components, the bone cement samples were categorized as follows: the gentamicin combined with aloe-emodin group, the gentamicin combined with quercetin group, the gentamicin combined with curcumin group, the gentamicin combined with tannic acid group, the gentamicin group, the aloe-emodin group, the quercetin group, the curcumin group, and the tannic acid group. Using the disk diffusion test, we investigated the antibacterial properties of the bone cement material against Staphylococcus aureus (n = 4). We tested cell toxicity and proliferation using the cell counting kit-8 (CCK-8) and examined the biocompatibility of bone cement materials. RESULTS: The combination of gentamicin with the four natural product extracts resulted in significantly larger diameters of inhibition zones compared to gentamicin alone, and the difference was statistically significant (P < 0.05). Except for the groups containing tannic acid, cells in all other groups showed good proliferation across varying time intervals without displaying significant cytotoxicity (P < 0.05). CONCLUSION: In this study, aloe-emodin, quercetin, curcumin, and tannic acid were capable of enhancing the in vitro antibacterial performance of gentamicin-loaded bone cement against S. aureus. While the groups containing tannic acid displayed moderate cytotoxicity in in vitro cell culture, all other groups showed no discernible cytotoxic effects.


Subject(s)
Anthraquinones , Biological Products , Curcumin , Emodin , Polyphenols , Gentamicins/pharmacology , Bone Cements/pharmacology , Curcumin/pharmacology , Quercetin , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology
19.
Med Eng Phys ; 125: 104137, 2024 03.
Article in English | MEDLINE | ID: mdl-38508790

ABSTRACT

Osteoporosis is a common bone disease that often leads to difficulty in vertebrae revision. Traditional pedicle screws are often complicated to operate and have poor visibility during implantation. A new detachable pedicle screw is needed to improve the revision effect. The aim of this study was to design a new detachable pedicle screw based on medical optical imaging to improve the outcome of vertebral revision in osteoporosis, and to improve operational feasibility and visibility. In this study, the parameters related to the degree of osteoporosis were obtained by optical imaging detection of the osteoporotic vertebral body. Then a new detachable pedicle screw was designed according to the test results to improve the effect of vertebral body revision. By preparing and optimizing the material and structure of the screw, it is ensured that it has sufficient mechanical strength and stability. Finally, the visibility and operability of the improved screw during implantation were verified by medical optical imaging. Compared with traditional screws, the new detachable pedicle screw can improve the vertebral body revision in the case of osteoporosis. The optical imaging test results show that the new screw has good visibility and maneuverability, providing more accurate guidance and positioning for the vertebral body revision operation.


Subject(s)
Osteoporosis , Pedicle Screws , Humans , Vertebral Body , Bone Cements , Biomechanical Phenomena , Osteoporosis/diagnostic imaging , Osteoporosis/surgery , Lumbar Vertebrae/surgery
20.
ACS Biomater Sci Eng ; 10(4): 2062-2067, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38466032

ABSTRACT

Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.


Subject(s)
Bone Cements , Polyethylene Glycols , Polyethylene Glycols/pharmacology , Prospective Studies , Bone Cements/pharmacology , Calcium Phosphates/pharmacology , Polymers , Dicarboxylic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...